Proof by induction Cheat Sheet

Proof by mathematical induction is a method used to prove statements that involve positive integers.

You need to be able to use proof by induction to prove results that involve:

- Summation of series
- Divisibility statements
- . Matrices

We will discuss each type of question separately.

The general method

When proving a statement by induction, there are four steps you must follow:

- 1. **Basis:** Prove the statement is true for a starting value (usually n = 1).
- 2. Assumption: Assume the statement is true for n = k, where k is a positive integer.
- **Inductive:** Use the assumption to prove that the statement is true for n = k + 1. 3.
- 4. **Conclusion:** Write a conclusion that verifies the statement is true for all positive integers, *n*.

The inductive step usually requires the most work, and therefore is where most of the marks will come from.

Series

- When proving results involving series, it is useful to write down what you need to prove in the inductive . step before starting.
- During the inductive step, you will need to use the fact that $\sum_{r=1}^{k+1} f(r) = \sum_{r=1}^{k} f(r) + f(k+1)$.

Example 1: Prove by induction that, for $n \in \mathbb{Z}^+$		
	$\sum_{r=1}^{n} (4r^3 - 3r^2 + r) = n^3(n+1)$	
Start by making a note of what you want to prove in the inductive step.	$\sum_{r=1}^{k+1} (4r^3 - 3r^2 + r) = (k+1)^3(k+2)$	
We start with the basis step; we show the $LHS = RHS$:	For $n = 1$: $LHS = 4(1)^3 - 3(1)^2 + 1 = 2$ $RHS = 1^3(1 + 1) = 2 = LHS$ \therefore the statement is true for $n = 1$.	
Next we carry out the assumption step:	Assume that the statement is true for $n = k$. i.e. $\sum_{r=1}^{k} (4r^3 - 3r^2 + r) = k^3(k+1)$	
Now for the inductive step. We need to prove that the statement is true for $n = k + 1$. Use the fact stated in the second	$\sum_{r=1}^{k+1} (4r^3 - 3r^2 + r) = \sum_{r=1}^k (4r^3 - 3r^2 + r) + (k+1)^{th} term$ $\sum_{r=1}^{k+1} (4r^3 - 3r^2 + r) = k^3(k+1) + 4(k+1)^3 - 3(k+1)^2 + k + 1$	
bullet point above. Simplifying by factoring out $(k + 1)$:	$r=1$ $= (k+1)[k^{3} + 4(k+1)^{2} - 3(k+1) + 1]$ $= (k+1)(k^{3} + 4k^{2} + 5k + 2)$	
Looking back at what we want to show, we can notice that the cubic we have factorises to $(k + 1)^2(k + 2)$. This gives the required result.	$= (k + 1)(k + 1)^{2}(k + 2)$ = $(k + 1)^{3}(k + 2)$: the statement is true for $n = k + 1$.	
Finish by writing the conclusion.	So we have proven the statement true for $n = 1$. When we assumed it to be true for $n = k$, we showed that it was also true for $n = k + 1$. \therefore by mathematical induction the statement is true for all $n \in \mathbb{Z}^+$.	
Finish by writing the conclusion.	So we have proven the statement true for $n = 1$. When we assur it to be true for $n = k$, we showed that it was also true for $n = k$ 1. \therefore by mathematical induction the statement is true for all $n \in \mathbb{Z}$	

This means that the statement is true for all positive integers, n.

resources_twition_course

Divisibility statements

 \mathbb{Z}^+ is used to denote the set of all positive integers.

• During the inductive step, it is useful to consider f(k + 1) - cf(k), where c is a constant chosen in order to cancel out terms.

$f(n) = 8^n - 3^n$ is divisible by 5		
We start with the basis step; we show the $LHS = RHS$ for $n = 1$:	For $n = 1$: $f(1) = 8^1 - 3^1 = 5 = 5(1)$ So the statement is true for $n = 1$.	
Next we carry out the assumption step:	Assume that the statement is true for $n = k$. i.e. $8^k - 3^k$ is divisible by 5.	
Now for the inductive step. We need to prove that the statement is true for $n =$	$f(k+1) = 8^{k+1} - 3^{k+1} = 8(8^k) - 3(3^k)$	
k + 1.	$f(k+1) - 3f(k) = 8(8^k) - 3(3^k) - 3(8^k) + 3(3^k)$	
We consider $f(k + 1) - 3f(k)$, since this causes the terms in 3^k to cancel out. We could also consider $f(k + 1) - 8f(k)$ so that the terms in 8^k would cancel out.	$f(k+1) - 3f(k) = 5(8^k)$	
Making $f(k + 1)$ the subject:	$f(k+1) - 3f(k) = 5(8^k)$ $f(k+1) = 3f(k) + 5(8^k)$	
n general, if two terms are divisible by k , then their sum will also be divisible by k .	$f(k)$ we assumed to be divisible by 5 and $5(8^k)$ is clearly divisible by 5. So the sum of these terms will also be divisible by 5. Hence the statement is true for $n = k + 1$.	
inish by writing the conclusion.	So we have proven the statement true for $n = 1$. When we assumed it to be true for $n = k$, we showed that it was also true for $n = k + 1$. \therefore by mathematical induction the statement is true for all $n \in \mathbb{Z}^+$.	

$f(n) = 3^{3n-2} + 2^{3n+1}$ is divisible by 19		
We start with the basis step; we show the $LHS = RHS$ for $n = 1$:	For $n = 1$: $f(1) = 3^{3-2} + 2^{3+1} = 3 + 16 = 19 = 19(1)$ So the statement is true for $n = 1$.	
Next we carry out the assumption step:	Assume that the statement is true for $n = k$. i.e. $3^{3k-2} + 2^{3k+1}$ is divisible by 19	
Now for the inductive step. We need to prove that the statement is true for $n = k + 1$.	$f(k+1) = 3^{3(k+1)-2} + 2^{3(k+1)+1} = 3^{3k+1} + 2^{3k+4}$	
Now we manipulate the powers to match those of $f(k)$. We do this so that terms will cancel out in the next step.	$f(k + 1) = 3^{3k-2+3} + 2^{3k+1+3}$ = 3 ³ (3 ^{3k-2}) + 2 ³ (2 ^{3k+1}) = 27(3 ^{3k-2}) + 8(2 ^{3k+1})	
We consider $f(k + 1) - 8f(k)$, since this causes the terms in 2^{3k+1} to cancel out. We could also consider $f(k + 1) - 27f(k)$ so that the terms in 3^{3k-2} would cancel out.	$f(k + 1) - 8f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - 8(3^{3k-2}) - 8(2^{3k+1}) f(k + 1) - 8f(k) = 19(3^{3k-2})$	
Making $f(k+1)$ the subject:	$f(k+1) = 8f(k) + 19(3^{3k-2})$	
In general, if two terms are divisible by k , then their sum will also be divisible by k .	$f(k)$ we assumed to be divisible by 19 and $19(3^{3k-2})$ is clearly divisible by 19. So the sum of these terms will also be divisible by 19. Hence the statement is true for $n=k+1$.	
Finish by writing the conclusion.	So we have proven the statement true for $n = 1$. When we assumed it to be true for $n = k$, we showed that it was also true for $n = k + 1$. \therefore by mathematical induction the statement is true for all $n \in \mathbb{Z}^+$.	

 $\textcircled{\label{eq:linear}{linear}}$

Rewriting to show clearly achieved the desired resul

Simplifying

Finishing by writing the cor

www.pmt.education <a>D© PMTEducation

Matrices

- . inductive step before starting.

Example 4: Prove by inductio

Start by making a note of w you want to prove in the inductive step. We start with the basis ste show the LHS = RHS for

Next we carry out the assumption step:

Now for the inductive step. need to prove that the stat is true for n = k + 1. Using above bullet point: Using our assumption step multiplying the matrices ou

Simplifying the entries:

Finishing by writing the conclusion.

Example 5: Prove by induction Start by making a note of to prove in the inductive st

We start with the basis ste the LHS = RHS for n = 1

Next we carry out the assu

Now for the inductive step prove that the statement k + 1. Using the above bul Using our assumption step

Multiplying the matrices or

Edexcel Core Pure 1

When proving results involving matrices, it is useful to write down what you need to prove in the

During the inductive step, you will need to use the fact that $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{k+1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^k \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

on that, fo	or $n \in \mathbb{Z}^+$ $\begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}^n = \begin{pmatrix} 1 & 1-2^n \\ 0 & 2^n \end{pmatrix}$
vhat	$ \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & 1 - 2^{k+1} \\ 0 & 2^{k+1} \end{pmatrix} $
p; we n = 1:	For $n = 1$: $LHS = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}^1 = RHS = \begin{pmatrix} 1 & 1-2 \\ 0 & 2 \end{pmatrix}$ \therefore true for $n = 1$. Assume that the statement is true for $n = k$
	i.e. $\binom{1}{0} \binom{-1}{2}^{k} = \binom{1}{0} \binom{-2^{k}}{2^{k}}$
. We cement g the	$ \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}^k \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix} $
and ut:	$ \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & 1-2^k \\ 0 & 2^k \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1+2(1-2^k) \\ 0 & 2(2^k) \end{pmatrix} $
	$= \begin{pmatrix} 1 & 1 - 2(2^{k}) \\ 0 & 2^{k+1} \end{pmatrix} = \begin{pmatrix} 1 & 1 - (2^{k+1}) \\ 0 & 2^{k+1} \end{pmatrix}$ as required.
	So we have proven the statement true for $n = 1$. When we assumed it to be true for $n = k$, we showed that it was also true for $n = k + 1$. \therefore by mathematical induction the statement is true for all $n \in \mathbb{Z}^+$.

on that, for $n \in \mathbb{Z}^+$ $\begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}^n = \begin{pmatrix} 2n+1 & -2n \\ 2n & 1-2n \end{pmatrix}$			
what you want tep.	$\begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}^{k+1} = \begin{pmatrix} 2(k+1)+1 & -2(k+1) \\ 2(k+1) & 1-2(k+1) \end{pmatrix}$		
ep; we show ::	For $n = 1$: LHS = $\begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}^1$		
	$RHS = \begin{pmatrix} 2(1) + 1 & -2(1) \\ 2(1) & 1 - 2(1) \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix} = LHS$ ∴ true for $n = 1$.		
imption step:	Assume that the statement is true for $n = k$. i.e.		
	$\begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}^{k} = \begin{pmatrix} 2k+1 & -2k \\ 2k & 1-2k \end{pmatrix}$		
b. We need to is true for $n =$ llet point:	$\begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}^{k+1} = \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}^k \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}$		
):	$\binom{3}{2} \begin{pmatrix} -2\\ 2 & -1 \end{pmatrix}^{k+1} = \binom{2k+1}{2k} \begin{pmatrix} -2k\\ 1-2k \end{pmatrix} \binom{3}{2} \begin{pmatrix} -2\\ 2 & -1 \end{pmatrix}$		
ut:	$ \begin{pmatrix} 2k+1 & -2k \\ 2k & 1-2k \end{pmatrix} \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix} $		
	$= \begin{pmatrix} 3(2k+1) - 4k & -2(2k+1) + 2k \\ 3(2k) + 2(1-2k) & -2(2k) - 1(1-2k) \end{pmatrix}$		
	$ = \begin{pmatrix} 2k+3 & -2k-2\\ 2k+2 & -2k-1 \end{pmatrix} $		
that we have that $n = k + k$	$= \begin{pmatrix} 2(k+1)+1 & -2(k+1) \\ 2(k+1) & 1-2(k+1) \end{pmatrix}$ \therefore true for $n = k+1$		
nclusion.	So we have proven the statement true for $n = 1$. When we assumed it to be true for $n = k$, we showed that it was also true for $n = k + 1$. \therefore by mathematical induction the statement is true for all $n \in \mathbb{Z}^+$.		

