Proof by induction Cheat Sheet

辰PMT

Divisibility statements

During the inductive step, it is useful to consider $f(k+1)-c f(k)$, where c is a constant chosen in order to
cancel out terms. cancel out terms.

- Summation of series
- Divisibility statements
- Matrices

We will discuss each type of question separately.
The general method
When proving a statement by induction, there are four steps you must follow:

1. Basis: Prove the statement is true for a starting value (usually $n=1$)
2. Assumption: Assume the statement is true for $n=k$, where k is a positive integer
3. Inductive: Use the assumption to prove that the statement is true for $n=k+1$.
4. Conclusion: Write a conclusion that verifies the statement is true for all positive integers, n.

The inductive step usually requires the most work, and therefore is where most of the marks will come from.

Series
When proving results involving series, it is useful to write down what you need to prove in the inductive step before starting.

During the inductive step, you will need to use the fact that $\sum_{r=1}^{k+1} f(r)=\sum_{r=1}^{k} f(r)+f(k+1)$.

Example 1: Prove by induction that, for $n \in \mathbb{Z}^{+}$$\sum_{r=1}^{n}\left(4 r^{3}-3 r^{2}+r\right)=n^{3}(n+1)$	
Start by making a note of what you want to prove in the inductive step.	$\sum_{r=1}^{k+1}\left(4 r^{3}-3 r^{2}+r\right)=(k+1)^{3}(k+2)$
We start with the basis step; we show the $L H S=$ RHS:	$\begin{aligned} & \text { For } n=1: \text { LHS }=4(1)^{3}-3(1)^{2}+1=2 \\ & R H S=1^{3}(1+1)=2=L H S \\ & \therefore \text { the statement is true for } n=1 . \end{aligned}$
Next we carry out the assumption step:	Assume that the statement is true for $n=k$. i.e. $\sum_{r=1}^{k}\left(4 r^{3}-3 r^{2}+r\right)=k^{3}(k+1)$
Now for the inductive step. We need to prove that the statement is true for $n=k+1$. Use the fact stated in the second bullet point above.	$\begin{aligned} & \sum_{\substack{r=1 \\ k+1}\left(4 r^{3}-3 r^{2}+r\right)=\sum_{r=1}^{k}\left(4 r^{3}-3 r^{2}+r\right)+(k+1)^{t h} \text { term }}^{k+1}\left(4 r^{3}-3 r^{2}+r\right)=k^{3}(k+1)+4(k+1)^{3}-3(k+1)^{2}+k+1 \\ & \sum_{r=1}^{k} \end{aligned}$
Simplifying by factoring out ($k+$ 1):	$\begin{aligned} & =(k+1)\left[k^{3}+4(k+1)^{2}-3(k+1)+1\right] \\ & =(k+1)\left(k^{3}+4 k^{2}+5 k+2\right) \end{aligned}$
Looking back at what we want to show, we can notice that the cubic we have factorises to ($k+$ $1)^{2}(k+2)$. This gives the required result.	$\begin{aligned} & =(k+1)(k+1)^{2}(k+2) \\ & =(k+1)^{3}(k+2) \text { : the statement is true for } n=k+1 . \end{aligned}$
Finish by writing the conclusion.	So we have proven the statement true for $n=1$. When we assumed it to be true for $n=k$, we showed that it was also true for $n=k+$ 1 . \therefore by mathematical induction the statement is true for all $n \in \mathbb{Z}^{+}$.

This means that the statement is This means that the statement
true for all positive integers, n.

Example 2: Prove by induction that, for $n \in \mathbb{Z}^{+}$	
$f(n)=8^{n}-3^{n}$ is divisible by 5	
We start with the basis step; we show the $L H S=R H S$ for $n=1$:	$\text { For } n=1: f(1)=8^{1}-3^{1}=5=5(1)$ So the statement is true for $n=1$.
Next we carry out the assumption step:	Assume that the statement is true for $n=k$. i.e. $8^{k}-3^{k}$ is divisible by 5 .
Now for the inductive step. We need to prove that the statement is true for $n=$ $k+1$.	$\begin{gathered} f(k+1)=8^{k+1}-3^{k+1}=8\left(8^{k}\right)-3\left(3^{k}\right) \\ f(k+1)-3 f(k)=8\left(8^{k}\right)-3\left(3^{k}\right)-3\left(8^{k}\right)+3\left(3^{k}\right) \end{gathered}$
We consider $f(k+1)-3 f(k)$, since this causes the terms in 3^{k} to cancel out. We could also consider $f(k+1)-$ $8 f(k)$ so that the terms in 8^{k} would cancel out.	$f(k+1)-3 f(k)=5\left(8^{k}\right)$
Making $f(k+1)$ the subject:	$\begin{aligned} & f(k+1)-3 f(k)=5\left(8^{k}\right) \\ & f(k+1)=3 f(k)+5\left(8^{k}\right) \end{aligned}$
In general, if two terms are divisible by k, then their sum will also be divisible by k.	$f(k)$ we assumed to be divisible by 5 and $5\left(8^{k}\right)$ is clearly divisible by 5 . So the sum of these terms will also be divisible by 5 . Hence the statement is true for $n=k+1$.
Finish by writing the conclusion.	So we have proven the statement true for $n=1$. When we assumed it to be true for $n=k$, we showed that it was also true for $n=k+1 . \therefore$ by mathematical induction the statement is true for all $n \in \mathbb{Z}^{+}$.

When proving results involving matrices, it is useful to write down what you need to prove in the inductive step before starting

During the inductive step, you will need to use the fact that $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{k+1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{k}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

Example 4: Prove by induction that, for $n \in \mathbb{Z}^{+}\left(\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right)^{n}=\left(\begin{array}{cc}1 & 1-2^{n} \\ 0 & 2^{n}\end{array}\right)$	
Start by making a note of what you want to prove in the inductive step.	$\left(\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right)^{k+1}=\left(\begin{array}{cc} 1 & 1-2^{k+1} \\ 0 & 2^{k+1} \end{array}\right)$
We start with the basis step; we show the $L H S=R H S$ for $n=1$:	$\begin{aligned} & \text { For } n=1: L H S=\left(\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right)^{1}=R H S=\left(\begin{array}{cc} 1 & 1-2 \\ 0 & 2 \end{array}\right) \\ & \therefore \text { true for } n=1 . \end{aligned}$
Next we carry out the assumption step:	Assume that the statement is true for $n=k$. $\text { i.e. }\left(\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right)^{k}=\left(\begin{array}{cc} 1 & 1-2^{k} \\ 0 & 2^{k} \end{array}\right)$
Now for the inductive step. We need to prove that the statement is true for $n=k+1$. Using the above bullet point:	$\left(\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right)^{k+1}=\left(\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right)^{k}\left(\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right)$
Using our assumption step and multiplying the matrices out:	$\left(\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right)^{k+1}=\left(\begin{array}{cc} 1 & 1-2^{k} \\ 0 & 2^{k} \end{array}\right)\left(\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right)=\left(\begin{array}{cc} 1 & -1+2\left(1-2^{k}\right) \\ 0 & 2\left(2^{k}\right) \end{array}\right)$
Simplifying the entries:	$=\left(\begin{array}{cc} 1 & 1-2\left(2^{k}\right) \\ 0 & 2^{k+1} \end{array}\right)=\left(\begin{array}{cc} 1 & 1-\left(2^{k+1}\right) \\ 0 & 2^{k+1} \end{array}\right) \text { as required. }$
Finishing by writing the conclusion.	So we have proven the statement true for $n=1$. When we assumed it to be true for $n=k$, we showed that it was also true for $n=k+1$.: by mathematical induction the statement is true for all $n \in \mathbb{Z}^{+}$.

