
Proof by mathematical induction is a method used to prove statements that involve positive integers. 

You need to be able to use proof by induction to prove results that involve: 

▪ Summation of series 

▪ Divisibility statements 

▪ Matrices

We will discuss each type of question separately. 

The general method 
When proving a statement by induction, there are four steps you must follow: 

1. Basis:  Prove the statement is true for a starting value (usually 𝑛 = 1).

2. Assumption: Assume the statement is true for 𝑛 = 𝑘, where 𝑘 is a positive integer.

3. Inductive: Use the assumption to prove that the statement is true for 𝑛 = 𝑘 + 1. 

4. Conclusion: Write a conclusion that verifies the statement is true for all positive integers, 𝑛. 

The inductive step usually requires the most work, and therefore is where most of the marks will come from. 

Series 

▪ When proving results involving series, it is useful to write down what you need to prove in the inductive 
step before starting. 

▪ During the inductive step, you will need to use the fact that  ∑ 𝑓(𝑟) = ∑ 𝑓(𝑟) + 𝑓(𝑘 + 1)𝑘
𝑟=1

𝑘+1
𝑟=1 . 

Matrices 

▪ When proving results involving matrices, it is useful to write down what you need to prove in the 
inductive step before starting. 

▪ During the inductive step, you will need to use the fact that (
𝑎 𝑏
𝑐 𝑑

)
𝑘+1

= (
𝑎 𝑏
𝑐 𝑑

)
𝑘

(
𝑎 𝑏
𝑐 𝑑

). 

Divisibility statements 

▪ During the inductive step, it is useful to consider 𝑓(𝑘 + 1) − 𝑐𝑓(𝑘), where 𝑐 is a constant chosen in order to
cancel out terms. 
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Example 1: Prove by induction that, for 𝑛 ∈ ℤ+ 

෍(4𝑟3 − 3𝑟2 + 𝑟) = 𝑛3(𝑛 + 1)

𝑛

𝑟=1

 

Start by making a note of what you 
want to prove in the inductive step.  ෍(4𝑟3 − 3𝑟2 + 𝑟) = (𝑘 + 1)3(𝑘 + 2)

𝑘+1

𝑟=1

 

We start with the basis step; we 
show the 𝐿𝐻𝑆 = 𝑅𝐻𝑆: 

For 𝑛 = 1: 𝐿𝐻𝑆 = 4(1)3 − 3(1)2 + 1 = 2 
𝑅𝐻𝑆 = 13(1 + 1) = 2 = 𝐿𝐻𝑆 
∴ the statement is true for 𝑛 = 1. 

Next we carry out the assumption 
step: 

Assume that the statement is true for 𝑛 = 𝑘. 
i.e.   ∑ (4𝑟3 − 3𝑟2 + 𝑟) = 𝑘3(𝑘 + 1)𝑘

𝑟=1  

Now for the inductive step. We 
need to prove that the statement is 
true for 𝑛 = 𝑘 + 1. 

Use the fact stated in the second 
bullet point above. 

෍(4𝑟3 − 3𝑟2 + 𝑟) =

𝑘+1

𝑟=1

෍(4𝑟3 − 3𝑟2 + 𝑟) + (𝑘 + 1)𝑡ℎ 𝑡𝑒𝑟𝑚

𝑘

𝑟=1

 

 

෍(4𝑟3 − 3𝑟2 + 𝑟) = 𝑘3(𝑘 + 1) + 4(𝑘 + 1)3 − 3(𝑘 + 1)2 + 𝑘 + 1

𝑘+1

𝑟=1

 

Simplifying by factoring out (𝑘 +
1): 

= (𝑘 + 1)ሾ𝑘3 + 4(𝑘 + 1)2 − 3(𝑘 + 1) + 1ሿ 
= (𝑘 + 1)(𝑘3 + 4𝑘2 + 5𝑘 + 2) 

Looking back at what we want to 
show, we can notice that the cubic 
we have factorises to   (𝑘 +
1)2(𝑘 + 2). This gives the required 
result. 

= (𝑘 + 1)(𝑘 + 1)2(𝑘 + 2) 
= (𝑘 + 1)3(𝑘 + 2) ∴ the statement is true for 𝑛 = 𝑘 + 1. 

Finish by writing the conclusion. So we have proven the statement true for 𝑛 = 1. When we assumed 
it to be true for 𝑛 = 𝑘, we showed that it was also true for 𝑛 = 𝑘 +
1. ∴ by mathematical induction the statement is true for all 𝑛 ∈ ℤ+. 

Example 2: Prove by induction that, for 𝑛 ∈ ℤ+ 

𝑓(𝑛) = 8𝑛 − 3𝑛 is divisible by 5 

We start with the basis step; we show 
the 𝐿𝐻𝑆 = 𝑅𝐻𝑆 for 𝑛 = 1: 

For 𝑛 = 1:  𝑓(1) = 81 − 31 = 5 = 5(1) 
So the statement is true for 𝑛 = 1. 

Next we carry out the assumption step: Assume that the statement is true for 𝑛 = 𝑘. 
i.e.   8𝑘 − 3𝑘 is divisible by 5. 

Now for the inductive step. We need to 
prove that the statement is true for 𝑛 =
𝑘 + 1. 

We consider 𝑓(𝑘 + 1) − 3𝑓(𝑘), since 
this causes the terms in 3𝑘 to cancel out. 
We could also consider 𝑓(𝑘 + 1) −
8𝑓(𝑘) so that the terms in 8𝑘 would 
cancel out. 

𝑓(𝑘 + 1) = 8𝑘+1 − 3𝑘+1 = 8(8𝑘) − 3(3𝑘) 

𝑓(𝑘 + 1) − 3𝑓(𝑘) = 8(8𝑘) − 3(3𝑘) − 3(8𝑘) + 3(3𝑘) 

𝑓(𝑘 + 1) − 3𝑓(𝑘) = 5(8𝑘) 

Making 𝑓(𝑘 + 1) the subject: 𝑓(𝑘 + 1) − 3𝑓(𝑘) = 5(8𝑘) 
𝑓(𝑘 + 1) = 3𝑓(𝑘) + 5(8𝑘) 

In general, if two terms are divisible by 𝑘, 
then their sum will also be divisible by 𝑘. 

𝑓(𝑘) we assumed to be divisible by 5 and 5(8𝑘) is clearly 
divisible by 5. So the sum of these terms will also be divisible 
by 5. Hence the statement is true for 𝑛 = 𝑘 + 1. 

Finish by writing the conclusion. So we have proven the statement true for 𝑛 = 1. When we 
assumed it to be true for 𝑛 = 𝑘, we showed that it was also 
true for 𝑛 = 𝑘 + 1. ∴ by mathematical induction the statement 
is true for all 𝑛 ∈ ℤ+. 

Example 3: Prove by induction that, for 𝑛 ∈ ℤ+ 

𝑓(𝑛) = 33𝑛−2 + 23𝑛+1 is divisible by 19 

We start with the basis step; we show 
the 𝐿𝐻𝑆 = 𝑅𝐻𝑆 for 𝑛 = 1: 

Next we carry out the assumption step: 

Now for the inductive step. We need to 
prove that the statement is true for 𝑛 =
𝑘 + 1. 

Now we manipulate the powers to match 
those of 𝑓(𝑘). We do this so that terms 
will cancel out in the next step. 

We consider 𝑓(𝑘 + 1) − 8𝑓(𝑘), since 
this causes the terms in 23𝑘+1 to cancel 
out. We could also consider 𝑓(𝑘 + 1) −
27𝑓(𝑘) so that the terms in 33𝑘−2 would 
cancel out. 

For 𝑛 = 1:  𝑓(1) = 33−2 + 23+1 = 3 + 16 = 19 = 19(1) 
So the statement is true for 𝑛 = 1. 

Assume that the statement is true for 𝑛 = 𝑘. 

i.e.   33k−2 + 23k+1 is divisible by 19 

𝑓(𝑘 + 1) = 33(𝑘+1)−2 + 23(𝑘+1)+1 = 33𝑘+1 + 23𝑘+4

𝑓(𝑘 + 1) = 33𝑘−2+3 + 23𝑘+1+3 

= 33(33𝑘−2) + 23(23𝑘+1) 

= 27(33𝑘−2) + 8(23𝑘+1) 

𝑓(𝑘 + 1) − 8𝑓(𝑘) = 27(33𝑘−2) + 8(23𝑘+1) − 8(33𝑘−2)

− 8(23𝑘+1) 
𝑓(𝑘 + 1) − 8𝑓(𝑘) = 19(33𝑘−2) 

Making 𝑓(𝑘 + 1) the subject: 𝑓(𝑘 + 1) = 8𝑓(𝑘) + 19(33𝑘−2) 

In general, if two terms are divisible by 𝑘, 
then their sum will also be divisible by 𝑘. 

𝑓(𝑘) we assumed to be divisible by 19 and 19(33𝑘−2) is clearly 
divisible by 19. So the sum of these terms will also be divisible 
by 19. Hence the statement is true for 𝑛=𝑘+1. 

Finish by writing the conclusion. So we have proven the statement true for 𝑛 = 1. When we 
assumed it to be true for 𝑛 = 𝑘, we showed that it was also 
true for 𝑛 = 𝑘 + 1. ∴ by mathematical induction the statement 
is true for all 𝑛 ∈ ℤ+. 

Example 5: Prove by induction that, for 𝑛 ∈ ℤ+      (
3 −2
2 −1

)
𝑛

= (
2𝑛 + 1 −2𝑛

2𝑛 1 − 2𝑛
) 

Start by making a note of what you want 
to prove in the inductive step. (

3 −2
2 −1

)
𝑘+1

= ൬
2(𝑘 + 1) + 1 −2(𝑘 + 1)

2(𝑘 + 1) 1 − 2(𝑘 + 1)
൰ 

We start with the basis step; we show 
the 𝐿𝐻𝑆 = 𝑅𝐻𝑆 for 𝑛 = 1: 

For 𝑛 = 1:  𝐿𝐻𝑆 = (3 −2
2 −1

)
1

𝑅𝐻𝑆 = ൬
2(1) + 1 −2(1)

2(1) 1 − 2(1)
൰ = (3 −2

2 −1
) = 𝐿𝐻𝑆 

∴ true for 𝑛 = 1. 

Next we carry out the assumption step: Assume that the statement is true for 𝑛 = 𝑘. 
i.e.

(
3 −2
2 −1

)
𝑘

= (
2𝑘 + 1 −2𝑘

2𝑘 1 − 2𝑘
) 

Now for the inductive step. We need to 
prove that the statement is true for 𝑛 =
𝑘 + 1. Using the above bullet point: 

(
3 −2
2 −1

)
𝑘+1

= (
3 −2
2 −1

)
𝑘

(
3 −2
2 −1

) 

Using our assumption step: 
(

3 −2
2 −1

)
𝑘+1

= (
2𝑘 + 1 −2𝑘

2𝑘 1 − 2𝑘
) (

3 −2
2 −1

) 

Multiplying the matrices out: 
(

2𝑘 + 1 −2𝑘
2𝑘 1 − 2𝑘

) (
3 −2
2 −1

) 

= ൬
3(2𝑘 + 1) − 4𝑘 −2(2𝑘 + 1) + 2𝑘

3(2𝑘) + 2(1 − 2𝑘) −2(2𝑘) − 1(1 − 2𝑘)
൰ 

Simplifying = (
2𝑘 + 3 −2𝑘 − 2
2𝑘 + 2 −2𝑘 − 1

) 

Rewriting to show clearly that we have 
achieved the desired result with 𝑛 = 𝑘 +
1: 

= ൬
2(𝑘 + 1) + 1 −2(𝑘 + 1)

2(𝑘 + 1) 1 − 2(𝑘 + 1)
൰ 

∴ true for 𝑛 = 𝑘 + 1 

Finishing by writing the conclusion. So we have proven the statement true for 𝑛 = 1. When we 
assumed it to be true for 𝑛 = 𝑘, we showed that it was also 
true for 𝑛 = 𝑘 + 1. ∴ by mathematical induction the statement 
is true for all 𝑛 ∈ ℤ+. 

Example 4: Prove by induction that, for 𝑛 ∈ ℤ+     (
1 −1
0 2

)
𝑛

= (
1 1 − 2𝑛

0 2𝑛 ) 

Start by making a note of what 
you want to prove in the 
inductive step. 

(
1 −1
0 2

)
𝑘+1

= (1 1 − 2𝑘+1

0 2𝑘+1 ) 

We start with the basis step; we 
show the 𝐿𝐻𝑆 = 𝑅𝐻𝑆 for 𝑛 = 1: 

For 𝑛 = 1:  𝐿𝐻𝑆 = (1 −1
0 2

)
1

= 𝑅𝐻𝑆 = (1 1 − 2
0 2

) 

∴ true for 𝑛 = 1. 

Next we carry out the 
assumption step: 

Assume that the statement is true for 𝑛 = 𝑘. 

i.e.  (
1 −1
0 2

)
𝑘

= (1 1 − 2𝑘

0 2𝑘 ) 

Now for the inductive step. We 
need to prove that the statement 
is true for 𝑛 = 𝑘 + 1. Using the 
above bullet point: 

(
1 −1
0 2

)
𝑘+1

= (
1 −1
0 2

)
𝑘

(
1 −1
0 2

) 

Using our assumption step and 
multiplying the matrices out: (

1 −1
0 2

)
𝑘+1

= (1 1 − 2𝑘

0 2𝑘 ) (
1 −1
0 2

) = ቆ
1 −1 + 2(1 − 2𝑘)

0 2(2𝑘)
ቇ 

Simplifying the entries: 
= ൬

1 1 − 2(2𝑘)

0 2𝑘+1 
൰ = ൬

1 1 − (2𝑘+1)

0 2𝑘+1 
൰ as required. 

Finishing by writing the 
conclusion. 

So we have proven the statement true for 𝑛 = 1. When we assumed it 
to be true for 𝑛 = 𝑘, we showed that it was also true for 𝑛 = 𝑘 + 1. ∴ 
by mathematical induction the statement is true for all 𝑛 ∈ ℤ+. 

ℤ+ is used to denote the set 
of all positive integers. 

This means that the statement is 
true for all positive integers, 𝑛. 
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